Genome Annotation Provides Insight into Carbon Monoxide and Hydrogen Metabolism in Rubrivivax gelatinosus

نویسندگان

  • Karen Wawrousek
  • Scott Noble
  • Jonas Korlach
  • Jin Chen
  • Carrie Eckert
  • Jianping Yu
  • Pin-Ching Maness
چکیده

We report here the sequencing and analysis of the genome of the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS. This microbe is a model for studies of its carboxydotrophic life style under anaerobic condition, based on its ability to utilize carbon monoxide (CO) as the sole carbon substrate and water as the electron acceptor, yielding CO2 and H2 as the end products. The CO-oxidation reaction is known to be catalyzed by two enzyme complexes, the CO dehydrogenase and hydrogenase. As expected, analysis of the genome of Rx. gelatinosus CBS reveals the presence of genes encoding both enzyme complexes. The CO-oxidation reaction is CO-inducible, which is consistent with the presence of two putative CO-sensing transcription factors in its genome. Genome analysis also reveals the presence of two additional hydrogenases, an uptake hydrogenase that liberates the electrons in H2 in support of cell growth, and a regulatory hydrogenase that senses H2 and relays the signal to a two-component system that ultimately controls synthesis of the uptake hydrogenase. The genome also contains two sets of hydrogenase maturation genes which are known to assemble the catalytic metallocluster of the hydrogenase NiFe active site. Collectively, the genome sequence and analysis information reveals the blueprint of an intricate network of signal transduction pathways and its underlying regulation that enables Rx. gelatinosus CBS to thrive on CO or H2 in support of cell growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft genome sequence of Rubrivivax gelatinosus CBS.

Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N(2) as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H(2). We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metaboli...

متن کامل

Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus.

A hydrogenase linked to the carbon monoxide oxidation pathway in Rubrivivax gelatinosus displays tolerance to O2. When either whole-cell or membrane-free partially purified hydrogenase was stirred in full air (21% O2, 79% N2), its H2 evolution activity exhibited a half-life of 20 or 6 h, respectively, as determined by an anaerobic assay using reduced methyl viologen. When the partially purified...

متن کامل

Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus.

When incubated in the presence of CO gas, Rubrivivax gelatinosus CBS induces a CO oxidation-H2 production pathway according to the stoichiometry CO + H2O --> CO2 + H2. Once induced, this pathway proceeds equally well in both light and darkness. When light is not present, CO can serve as the sole carbon source, supporting cell growth anaerobically with a cell doubling time of nearly 2 days. This...

متن کامل

Evidence that Altered Cis Element Spacing Affects PpsR Mediated Redox Control of Photosynthesis Gene Expression in Rubrivivax gelatinosus

PpsR is a major regulator of photosynthesis gene expression among all characterized purple photosynthetic bacteria. This transcription regulator has been extensively characterized in Rhodobacter (Rba.) capsulatus and Rba. sphaeroides which are members of the α-proteobacteria lineage. In this study, we have investigated the biochemical properties and mutational effects of a ppsR deletion strain ...

متن کامل

Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus.

Carotenoids are essential to protection against photooxidative damage in photosynthetic and non-photosynthetic organisms. In a previous study, we reported the disruption of crtD and crtC carotenoid genes in the purple bacterium Rubrivivax gelatinosus, resulting in mutants that synthesized carotenoid intermediates. Here, carotenoid-less mutants have been constructed by disruption of the crtB gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014